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Abstract

Itis known that mixing enhancement in compressible

freeshear layerflowswith high convectiveMach num-

bers isdifficult.One designstrategyto get around this

is to use multiple nozzles. Extrapolating this design

concept in a one dimenional manner, one arrivesat an

array of parallelrectangularnozzleswhere the smaller

dimension isw and the longer dimension b istaken to

be infinite.In this paper, the feasibilityof predicting

the stabilityof thistype of compressible periodicpar-

alleljet flow isdiscussed.The problem istreatedusing

Floquet-Bloch theory.Numerical solutionstothiseigen-

value problem are presented. For the case presented,

the interjetspacing,s,was selectedso that s/w = 2.23.

Typical plotsofthe eigenvalueand stabilitycurves are

presented. Results obtained for a range of convective
Mach numbers from 3 to 5 show growth ratesw_ = -_

range from 0.25 to 0.29. These resultsindicate that
coherent two-dimensional structurescan occur without

difficultyin multiple parallelperiodicjet nozzles and

that shear layermixing should occur with thistype of

nozzledesign.

1 Introduction

Interest in proving the economic and environmental fea-

sibility of a high-speed civil transport has stimulated

again studies in supersonic nozzle design. The primary

process which must be understood and controlled to

meet design objectives involves supersonic mixing. Im-

proving the efficiency of supersonic combustors is an-
other area where mixing enhancement at supersonic

speeds must be understood and controlled to meet de-

sign objectives.
A reduction in mixing and a growth rates of su-

personic shear layers with increasing Mach number has
been demonstrated experimentally by many investiga-

tots (Refs. [I],[2],[3]). In addition, linear stability

analysis shows resultsthat are similarto the experi-

mental studies (Refs. [4], [5], [6] ). However, these

linear stability investigations have been of unbounded
flows that are uniform at infinity. No attention has

been given to supersonic flows periodic in the direction
normal to the stream. In this paper, the feasibility of

predicting the stability of a compressible periodic par-

allel jet flow is discussed. While this problem has not
been dealt with analytically, one design strategy to get

around the decrease in mixing with increasing convec-
tive Mach number is to use multiple nozzles. Recent

flow studies using multiple rectangular nozzles are pre-

sented in Refs. [7] and [8]. Extrapolating this design

concept in a one dimensional manner, one arrives at an

array of parallel rectangular nozzles where the smaller
dimension is w and the longer dimension b is taken to

be infinite. In addition, one starting point for a compu-

tational fluid dynamic study of multiple nozzles might

be a study of a compressible periodic parallel jet flow.

Consequently, the work discussed might be of interest

to both the experimental and computational nozzle de-

sign community. Furthermore, this type of study might
also be useful in understanding screech from multiple

nozzles since it provides information on the flow distur-

bances leaving the nozzle.

In this paper the linear stability of a spatially peri-

odic supersonic jet flow having velocity profile charac-

terized by an abrupt rise and a sharp fall is discussed.
In contrast to the uniform velocity distribution of free

flows such as jets, wakes, and free shear layers in the far
field, the periodic flow repeats exactly its velocity pro-

file endlessly. The periodic flow is, therefore, expected

to have different stability characteristics than those of

free flows. In particular, the variation growth rates with
Mach number needs to be examined. In this paper, the



inter jet spacing_ s, was selected so that s/w = 2.23 and

the ratio of the periodic nozzle wavelength, A = s + w,
to w was 3.23. Note that to is the smaller dimension of

the rectangular nozzle. Results obtained for a range of

convective Mach numbers from 3 to 5 will be presented.

where the primes denote differentiation with respect
to z)

t_ (h- e)2
A = -ik - i--z- + m2ik

k 4

2 Formulation of the problem

Let (U(9), 0, 0) be the velocity of a steady plane-parallel
flow, where the x-axis is in the direction of the flow and

u(_) = _ + -_h(v)

where UI isthe velocityoutsidethe jet,[/2isthe

mean centerlinejetvelocity,0 = _-_2u ,A U = U2--Ux,

and h(y) is the velocityprofilefunction which varies
from-I to i.

The flow fieldisperturbed by introducingwave dis-

turbances in the velocityand pressure with amplitudes

that are a functionof l).Thus,

(_,_,,_,_)

Where

]¢ = kL *,

= lL*,

a_L *

AU'
w c

k kAU AU

and we define_ as follows

c 6"

_= A--_= Au+2 •

By definitionk isreal positivenumber that rep-

resents the wavenumber in the z-direction,i is the

wavenumber in the z-direction,cr isthe relativephase

velocity,and wi = _ isthe amplificationrate of the

disturbance.

From the equations of motion if nonlinear and

viscousterms are neglected one can obtain an equation

for the y-component of the perturbation velocity as

follows:

72

(2._)

_l A I

_'(7+ T )
h" T' A' h' ]

(h _----_+ A_ - (_ + 7)K-:-_] =o

A' = 2rn2ik (h -- _)h'
4

and from Crocco's Equation [9]

_(y)

where

T(y)

T1

T2 (1 + h(y)) T2,

Tx + 2 (1 - J

--I(mi)2(72--I)(h(y)+ l)(h(y)--i)4

Av av v_2 v_2

In this paper, the velocity profile function, h(y), is

periodic such that

h(y + 2_) = h(v).

The velocity profile h(y) is not any exact solution

of the Navier-Stokes equation, but it can be considered

as a simple model of some real periodic flow.
The velocity profile h(y) discussed herein is given

by

h(v) = 1- 2I(y)

where the function l(y) is given by

1

= h(-1 + _),

A = 1.5 and y goes from 0.0 to 2_r. The profile

function f(y) is adapted from an equation used by

Monkewitz in Ref. ( [10] ) in a study of the absolute and

convective instability of two-dimensional wakes. Only
two-dimensional disturbances will be considered. A

schematic of the nozzle geometry is shown in Figure

1. The velocity profile is shown in Figure 2.



3 Floquet-Bloch theory

Since the basic flow velocity profile , f(y), is periodic,

equation (2.1) is an example of a Floquet-Bloch prob-
lem. The mathematics of solving Floquet-Bloch type

problems is discussed in Refs. [11], [12], and [13]. Ap-

plications to solid state physics are discussed in Refs.

[14], [15], and [16]. Applications to spatially periodic
flow is discussed in Refs. [17], [18], [19], [20], and [21].

The paper by Beaumont (1981) Ref. [19] and the

description of the Floquet-Bloch theorem by Hochstadt

(1963) in Ref.[12] were particularly useful in guiding this
research.

A survey of the spatially periodic flow literature is

presented by K. Gotoh and M.Y. Yamada in Ref. [22] .
The second order differential equation can be de-

scribed by a system of first order differential equations.

Let

(3.2)

where

so that Eq. 2.1 can be rewritten as the system

X'=( 0D C1) X

_,t A t

c = (-_+ _)

and

[h" Y, _) h'
D = [(h -- e) + A_ - (T + A (h - a)

If q,(y) is a fundamental matrix solution of equation

((3.2) ) such that

_(0) = i

where I is the identity matrix,

Floquet-Bloch theorem

then from the

We now introduce two solutions of equation ( 3.2 )

with initial values at y = 0.0

¢_'(o) ¢2'(o) = o 1

Next we seek the eigenvalues of _(27r)

(3.3)

] ¢1(2_)-_ ¢2(2_) ]= ¢1'(2_) ¢2'(2_) -

_-- _2 _ (¢1(27r) 4- ¢2'(27r))p

+(¢z(27r)¢2'(2r) --

¢2(2_r)¢l'(27r))

_-- #2 _ (¢z(2_r) + ¢2'(27r))/J + 1

Since

¢l(27r)¢2'(27r)- ¢2(27r)¢l'(27r)= 1_(2=)1--I_(0)1-- 1

The independent solutionsof equation (3.2) have

the form

,Zog(.) ,
¢ = X(y) exp(_y] = X(y) exp(r_)

The parameter r specifies the period of the eigen-
function ¢. If r is real the eigenfunction grows or de-

cays at infinity. Consequently, only imaginary values

of r are acceptable. Thus the eigenfunction oscillates

in space and is called a continuous mode. The distur-

bance with Fi = 1/n, where n is a nonzero integer, has

a period 2,_. One with ri = 0 has the same period 27r
as the main flow, while an irrational value of Fi means

the disturbance is aperiodic. Note that the parameter

F does not appear in the flow equation, but is due to

the Floquet-Bloch theorem.
Solutions of 3.2 are thus of the form

x,(v + 2,_) = taxi(z,)
x2(y + 2,_) = _2x2(_,)

where/_1 and/_2 represent the zeros of (3.3), pro-

vided they are distinct.

In general, these solutions will not be periodic.

Conditions for periodic solutions can be found as
follows

Let _z = eW_ and P2 = e-Wt

Then from equation (3.3)

cos(0d= _(2_) + ¢_'(2_) = _/2

Consequently, for a solutionto be periodic _ must

be realand 161smallerthan 2.

The constants p are termed the characteristicmul-

tipliersof the Floquet-Bloch system (3.2)and the cor-

responding characteristicexponents are determined by

the relation r = r_ + Jr, = _-_ _ + _-_.2_r ----



T_ble I Eigenvalues at maximum

= 0.2 A = 1.5 s/h = 2.23)

m2 I k = I r,
3 2.855

3.2 2.735

3.4 2.495

4. 2.470

5 2.675

growth rate

0.2855 2.158e-01 -0.2195

0.2735 1.359e-01 -0.2005

0.2495 9.450e-02 0.4963

0.2470 7.632e-02 0.5262

0.2675 4.010e-03 0.6367

Table II Cray YMP CPU

computation time, hrs. (A = 1.5 s

rn2

3.4

4

5

Total

[ c_= 0.1 c_= 0.2 = 0.3

/h = 2.23

Total

20.863 12.768 3.049 36.68

20.654 11.697 6.913 39.265

19.236 12.724 5.571 37.531

26.147 11.847 6.525 44.519

25.555 13.17 5.212 43.937

201.932

4 Numerical calculations

In obtaining the results presented here equation 3.2

was integrated from y = 0 to y = 2_ using a standard

Runge-Kutta procedure (I1VISL math library routine

IVPRK) for fixed values of _i = 0.1, 0.2, and 0.3 for

m2 values of 3, 3.2, 3.4, 4 and 5.

To investigate stability, iteration was used to vary

the real value of the phase velocity, _,. At each iteration,

the eigenvalues, #, of the matrix _(2¢r) were then
found and the corresponding characteristic multipliers
1" calculated. The iteration was successful if _i = 0 so

that 1"r : 0. Also at each iteration a check was made

that det _(2_r) --- 1.
Typical eigenvalue plots of the phase velocity,

verses growth rate wi and stability plots of the charac-

teristic multipliers ri verses _i are presented in Figures
3-8.

5 Results

Results for m2 = 3 are given for 8i = 0.1,0.2, and 0.3 in

Figures 3-5. The (a) part of the figure shows eigenvaiue

plots of the phase velocity, 8e verses growth rate w= while

the (b) part of the figure shows stability plots of the
characteristic multipliers 1"_ verses _i. Results using

the same format are presented for ra2 = 4.0 in Figures

6-8.

Table I shows the values at the growth rate maxi-

mums for the cases investigated. Results obtained for

a range of convective Math numbers from 3 to 5 show

growth rates _i = -_ range from 0.2 to 0.3.
Table II. shows the CRAY YMP CPU compu-

tational time needed to search the phase speed, c,

wavenumber k space in order to see if solutions exist.
The wave number spacing used was 0.005. The total

computation time was slightly more than 200 hours.
The results were slowly accumulated over a period of
seven months.

6 Conclusions

A numerical method for performing the stability analy-

sis of a compressible periodic parallel jet flow has been

developed and tested. Obtaining a set of solutions is a

tedious expensive process. However, the resulting solu-

tions provide detailed information on the growth, phase
speed and periodicity of small disturbances propagating
with the flow near the nozzle exit.

These results indicate that coherent structures can

occur without difficulty in multiple parallel periodic

jet nozzles and that shear layer mixing should occur

with this type of nozzle design. Using these results,

it should be possible to determine which nozzle design
yields solutions with high growth rates and to pick out

likely screech frequencies due to feedback from shock
cells to the nozzle.
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Figure 3._(a) Eigenvalue cr verses growth rate toi = kci/2 (c i = 0.1, m 2 -- 3, s/w = 2.23). (b) r i verses

growth rate _i = kci/2 (c i -- 0.1, m 2 -- 3, s/w = 2.23).
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